As shown in Figure 1A, after 24 hours of infection, the isolate 9

As shown in Figure 1A, after 24 hours of infection, the isolate 97-1505 (presence JQ-EZ-05 of PLCs) was more resistant to killing by alveolar macrophage than Lenvatinib order 97-1200 (absence of PLCs). Considering that mycobacterial PLCs have cytotoxic effects on macrophages [7], we studied the viability of rat alveolar macrophages infected in vitro with the isolates 97-1200 or 97-1505 to investigate if cell death is associated to mycobacterial PLCs. In comparison to uninfected

cells, mycobacterium isolate 97-1505 reduced cell viability by more than 40%, which was approximately 20% higher than the cell death induced by 97-1200 (Figure 1B). Regarding the cell death modality, alveolar macrophages infected with 97-1505 underwent significantly more death by necrosis, and no differences were observed in apoptosis induced by 97-1200 or 97-1505 isolates (Figure 1C). These results suggest that Mtb bearing PLCs genes plays a role in host-cell death by inducing necrosis, which contributes significantly to mycobacterial resistance to microbicidal activity of alveolar macrophages. Figure 1 Intracellular killing of Mtb isolates 97-1200 or 97-1505 and cell death of infected alveolar macrophages. Alveolar macrophages were infected in vitro for 24 learn more h with Mtb isolates 97-1200 or 97-1505 at MOI 5. (A) Bacterial killing was assessed by resazurin

metabolisation and expressed as a percentage of phagocytised bacteria. (B) Cell viability assessed by resazurin metabolisation. Maximum viability (100%) is based on uninfected Demeclocycline cells. (C) ELISA assay of apoptosis and necrosis 24 h post-infection of alveolar macrophages in vitro. Camptothecin 5 μg/mL (CAMP) was used as apoptosis-positive control and hypertonic buffer as necrosis-positive control. # P < 0.0001 for uninfected cells vs. infected cells (97-1505 or 97-1200); ***P < 0.0001; **P < 0.001 (one-way ANOVA). Data are representative

of three (A, B) and two (C) independent experiments (error bars, s.e.m.). PLCs-expressing Mycobacterium tuberculosis more efficiently stimulates the production of proinflammatory cytokines and NO by alveolar macrophages in vitro The results shown in Figure 1 indicate that the isolate 97-1505 is more resistant to bactericidal activity by inducing host-cell necrosis. Thus, we next asked if the production of pro-inflammatory cytokines and NO is affected, since these mediators are essential for host control of Mtb infection [18]. In addition, previous data from our lab revealed that lungs from mice infected with the isolate 97-1505 presented extended tissue damage, which was suggested to be associated with strong production of pro-inflammatory cytokines (data not shown). Here, in vitro infection showed that both isolates induced a strong production of NO and the cytokines TNF-α, IL-6, IL-1α, IL-1β, and IL-10.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>