Biochim Biophys Acta

2010,1804(4):762–767 PubMed 88 Clay

Biochim Biophys Acta

2010,1804(4):762–767.PubMed 88. Clay MD, Jenney FE Jr, Noh HJ, Hagedoorn PL, Adams MW, Johnson MK: Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase. Biochemistry 2002,41(31):9833–9841.PubMedCrossRef 89. Grunden AM, Jenney FE Jr, Ma K, Ji M, Weinberg MV, Adams MW: In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Appl Environ Microbiol 2005,71(3):1522–1530.PubMedCrossRef 90. Clay MD, Cosper CA, Jenney FE Jr, Adams MW, Johnson MK: Nitric oxide binding at the mononuclear active site of reduced Pyrococcus furiosus superoxide reductase. Proc Natl Acad Sci USA 2003,100(7):3796–3801.PubMedCrossRef 91.

Im YJ, Fosbretabulin ic50 Ji M, Lee A, Killens R, Grunden AM, Boss WF: Expression of Pyrococcus furiosus superoxide selleck screening library reductase in Arabidopsis enhances heat tolerance. Plant Physiol 2009,151(2):893–904.PubMedCrossRef 92. Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Raleiras P, Moura I, Moura JJ, Romao MJ: The first crystal structure of class III superoxide reductase from Treponema pallidum. J Biol Inorg Chem 2006,11(5):548–558.PubMedCrossRef selleck chemical 93. Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Moura I, Moura JJ, Romao MJ: Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005,61(Pt 11):967–970.PubMedCrossRef

Methocarbamol 94. Niviere V, Lombard M, Fontecave M, Houee-Levin C: Pulse radiolysis studies on superoxide reductase from Treponema pallidum. FEBS Lett 2001,497(2–3):171–173.PubMedCrossRef 95. Auchere F, Sikkink R, Cordas C, Raleiras P, Tavares P, Moura I, Moura JJ: Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin. J Biol Inorg Chem 2004,9(7):839–849.PubMedCrossRef 96. Hazlett KR, Cox DL, Sikkink RA, Auch’ere F, Rusnak F, Radolf JD: Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol 2002, 353:140–156.PubMedCrossRef 97. Auchere F, Raleiras P, Benson L, Venyaminov SY, Tavares P, Moura JJ, Moura I, Rusnak F: Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6). Inorg Chem 2003,42(4):938–940.PubMedCrossRef 98. Lombard M, Houee-Levin C, Touati D, Fontecave M, Niviere V: Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis. Biochemistry 2001,40(16):5032–5040.PubMedCrossRef 99. Niviere V, Lombard M: Superoxide reductase from Desulfoarculus baarsii. Methods Enzymol 2002, 349:123–129.PubMedCrossRef 100.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>