However, most of the studies performing

such comparisons

However, most of the studies performing

such comparisons were either restricted to small numbers of isolates or were limited in the typing methodologies used, relying essentially on M/emm typing. Serotyping of GAS based on protein M, a major surface virulence factor, has long been used as the gold standard for the epidemiological surveillance of the infections caused by this pathogen. In Necrostatin-1 recent years it has been widely replaced VX-680 price by an equivalent approach based on sequencing the hypervariable region of the emm gene encoding the M protein. However, recent studies show that emm typing alone is not sufficient to unambiguously identify GAS clones and that it must be complemented with other typing methods such as pulsed-field gel electrophoresis

(PFGE) macrorestriction profiling or multilocus sequence typing (MLST) [13]. Streptococcal superantigens (SAgs) secreted by S. pyogenes play an important role in the pathogenesis of the infections caused by this species [14]. The profiling of the eleven PRI-724 concentration SAg genes described so far (speA, speC, speG, speH, speI, speJ, speK, speL, speM, ssa, smeZ) can be used as a typing methodology [15]. Some studies suggested an association between the presence of certain SAg genes or of certain SAg gene profiles and invasive infections [10, 16], although others failed to establish such an association, reporting instead a strong link between the SAg profile and the emm type, regardless of the isolation site [12, 15]. We have previously characterized a collection of 160 invasive GAS isolates collected throughout Portugal between 2000 and 2005, and found a very high genetic diversity among this collection, but with a dominant clone representing more than 20% of the isolates, which was characterized as emm1-T1-ST28 and carried the gene speA[17]. The aim of the present study was to evaluate if the clone distribution among the invasive GAS isolates in Portugal reflected the clonal structure of the isolates causing pharyngitis, in terms of molecular properties

and antimicrobial resistance. In order to do that, 320 non-duplicate isolates collected from pharyngeal exudates associated with tonsillo-pharyngitis in the same time period were studied by emm typing, T typing, SAg profiling, PFGE macrorestriction profiling, and selected isolates PJ34 HCl were also submitted to MLST analysis. All isolates were also tested for their susceptibility to clinically and epidemiologically relevant antimicrobial agents. The great majority of the clones were found with a similar frequency among invasive infections and pharyngitis. Still, some clones were shown to have a higher invasive disease potential and it was also possible to establish significant associations between some emm types and SAg genes and disease presentation. Results Antimicrobial resistance All isolates were fully susceptible to penicillin, quinupristin/dalfopristin, chloramphenicol, vancomycin, linezolid, and levofloxacin (Table 1).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>