In case of single gene deletion, the complete ORF (start to stop codon) was removed, leaving the surrounding DNA intact
as in the wild type plasmid. None of the four mutants of the hyl Efm -region showed a deleterious effect in the growth kinetics compared to TX1330RF (pHylEfmTX16) (harbouring an intact plasmid, Additional file 1). Moreover, we were unable to observe any attenuation of virulence in the mouse peritonitis model compared to the parental strain with the intact plasmid (Figure 6A-D), which further supports the fact that the four genes of the hyl Efm region do not appear to be directly involved in increasing the pathogenic potential of pHylEfmTX16 in strain TX1330RF(pHylEfmTX16). Figure
6 Survival curves learn more in the mouse selleck chemicals peritonitis model of E. faecium TX1330RF(pHyl EfmTX16 ) and deletion mutants (Figure 1 and Table 1) showing representative inocula (5 inocula per each experiment). A, TX1330RF(pHylEfmTX16) vs TX1330RF(pHylEfmTX16Δ4genes); B, TX1330RF(pHylEfmTX16) vs TX1330RF (pHylEfmTX16Δhyl); C, TX1330RF(pHylEfmTX16) vs TX1330RF(pHylEfmTX16Δ hyl-down ); D, TX1330RF(pHylEfmTX16) vs TX1330RF(pHylEfmTX16Δ down ) Megaplasmids (>145 kb, with or without hyl Efm ) have been recently found to be widespread among clinical isolates of E. faecium worldwide [12, 13, 15]. The proportion of these Amylase plasmids carrying hyl Efm appears to vary according to geographical location (ca. 11 to 36%) [12, 13]. Our findings indicate that the four genes of the hyl Efm -cluster studied here, including hyl Efm are not the main mediators of the virulence effect conferred by the plasmid carrying them in experimental peritonitis. Since the pHylEfm plasmids are large, it is presumed that other genes (i.e., upstream or downstream of the glycoside hydrolase-encoding genes) are more relevant in mediating this effect. Additionally, we cannot exclude that the hyl Efm cluster studied in this work may play a role in other
infections such as endocarditis or urinary tract infections (a subject of our ongoing studies). As a final remark, the adaptation of the pheS * counter-selection system for targeted mutagenesis in plasmid and chromosomal genes of E. faecium will facilitate the understanding of the role of other specific plasmid genes in the pathogenesis of E. faecium infections in the near future. Conclusions We provided evidence that four genes of the hyl Efm -region (including hyl Efm ) do not mediate the virulence effect of the E. faecium plasmid pHylEfm in experimental peritonitis. The adaptation of the PheS* counter-selection system for targeted mutagenesis of E. faecium should facilitate the study of the role of other pHylEfm genes in the pathogenesis of murine peritonitis.