In these experiments, fusion was only observed
between inclusions tightly clustered around the MTOC/centrosome of the host cell. (Also see Additional file 1: Movie 1). Figure 1 Inclusion fusion occurs at the centrosomes. HeLa cells were transfected with EB1-GFP to visualize centrosomes (arrow in A). Eighteen hours post-transfection, cells were infected with C. trachomatis at MOI = 20. During infection, cells were photographed every 10 minutes until 24 hpi. Times post infection are indicated in each corresponding image. Intact microtubules are required for efficient inclusion fusion We demonstrated that fusion occurs at the centrosomes and we have previously reported that trafficking on microtubules is required for the localization of chlamydial inclusions at the centrosomes. We asked VX-661 price whether the microtubule network influenced inclusion fusion. HeLa cells were infected with C. trachomatis. Following infection, cells were incubated in the presence or absence of nocodazole and then fixed every two hours between 10 and 24 hpi.
Inclusion fusion occurred at approximately 14 hpi for unHKI-272 chemical structure treated cells (Figure 2A). In cells that had been treated with nocodazole, fusion was significantly delayed. Nocodazole-treated cells had an average of eight inclusions per cell at 24 hpi (Figure 2A). IWP-2 concentration Fusion was not completely abolished by nocodazole treatment suggesting that the fusion machinery does not require microtubules but instead that the microtubules accelerate fusion. Representative pictures of nocodazole treated and untreated cells are shown in Figure 2B and C, respectively. Figure 2 Inclusion fusion is delayed in HeLa cells treated
with nocodazole. HeLa cells were infected with C. trachomatis at MOI ~ 9 in the presence and absence of nocodazole (Noc) and fixed at 10, 12, 14, 16, 20, 22 and 24 hpi. Cells were stained with human sera and anti-g-tubulin antibodies and inclusions were enumerated (A). Representative treated and untreated HeLa cells (B and C, respectively). Inhibiting dynein function in HeLa cells inhibits inclusion fusion Chlamydial microtubule trafficking is dependent on the host microtubule motor protein dynein. To investigate the role of dynein in inclusion fusion, we injected Cos7 cells with anti-dynein intermediate chain antibodies (DIC74.1). Following Selleckchem C59 injection, cells were infected with C. trachomatis. Uninjected cells were infected in parallel. Cells were fixed at 6 and 24 hpi. In cells that had been injected with anti-dynein antibodies, inclusion clustering was decreased early in infection and inclusion fusion decreased (Figure 3A and B, respectively). At 24 hpi, there was a significant difference between injected and uninjected cells (P < 0.001); injected cells averaged three inclusions per infected cell while uninjected cells averaged one inclusion per infected cell (Figure 3C).